

TAKEDA ONCOLOGY: INNOVATIVE CELL THERAPIES & NEW FRONTIERS IN IMMUNO-ONCOLOGY

Chris Arendt, PhD

Head of Oncology Drug Discovery Unit Takeda Pharmaceutical Company Limited Tokyo November 21, 2019

Better Health, Brighter Future

A CURATIVE-INTENT IMMUNO-ONCOLOGY PIPELINE IS TAKING SHAPE (Takeda)

WAVE 1

NMEs that complement our global brands

WAVE 2

Leading platforms in immuno-oncology and cell therapies

PARTNERSHIPS DRIVE OUR DIFFERENTIATED EARLY CLINICAL PIPELINE Takeda

Unique Partnership Model

- Innovative, disruptive platforms
- Agility in 'open lab' model

Differentiated Portfolio

- · Harness innate immunity
- Eye towards solid tumors

THE FIRST BREAKTHROUGHS IN CANCER IMMUNOTHERAPY **TARGET T CELLS**

OUR FOCUS IS ON NOVEL MECHANISMS IN THE CANCER-IMMUNITY CYCLE

Adapted from Chen & Mellman, Immunity 2013

1

EMERGING STRENGTH IN TARGETED INNATE IMMUNE MODULATION

HIGH UNMET NEED

Patients refractory/ unresponsive to current immunotherapies

OUR DIFFERENTIATED APPROACH

Systemic therapies leveraging innate immunity to enhance response breadth, depth & durability

PLATFORM	PARTNER	MECHANISM-OF-ACTION	PROGRAMS	PRE-CLINICAL	PH 1
STING agonism	CURADEV Let science do the talking	Innate-to-adaptive priming	TAK-676 (STING agonist) Targeted STING agonist	×	•
SUMOylation		Innate immune enhancer	TAK-981 TAK-981 (ADCC combo)		* *
Attenukine [™]	teva	• Targeted attenuated IFN- α	TAK-573 (CD38-Attenukine™) Next-gen Attenukine™		<u>~</u>

ADCC = Antibody-dependent cellular cytotoxicity

= first-in-class

ATTENUKINE™ PLATFORM ELICITS BOTH DIRECT TUMOR KILL AND IMMUNE ACTIVATION

TARGETED ATTENUATED TYPE I IFN PAYLOAD

FPI = first patient in R/R MM = Relapsed / refractory multiple myeloma POM = proof-of-mechanism

TAK-573 POM IN ONGOING PHASE 1 R/R MM STUDY

NOVEL SCAFFOLD NEXT-GENERATION CHECKPOINT MODULATORS Takedo

HIGH UNMET NEED

Current checkpoint modulators fail to improve overall survival in majority of patients

OUR DIFFERENTIATED APPROACH

New classes of checkpoint inhibitors designed to increase breadth and depth of responses

PLATFORM	PARTNER	MECHANISM-OF-ACTION	PROGRAMS	PRE-CLINICAL	PH 1
Humabody Vh	Crescendo*	Unique pharmacology	Concept 1 Concept 2		
Agonist-redirecte checkpoints	SHATTUCK	Co-inhibition & co- stimulation	TAK-252 / SL-279352 (PD1-Fc-OX40L) TAK-254 / SL-115154 (CSF1R-Fc-CD40L)		<u>**</u>

BRINGING 5 NOVEL CELL THERAPY PLATFORMS TO THE CLINIC BY THE END OF FY20

HIGH UNMET NEED

Current CAR-T therapies have significant challenges & fail to address solid tumors

OUR DIFFERENTIATED APPROACH

Leverage novel cell platforms & engineering to address shortcomings in liquid & solid tumors

INNATE IMMUNE PLATFORMS

- · Multiple mechanisms of tumor killing
- · 'Off-the-shelf'
- · Utility in solid tumors

Innate tumor sensors & effectors

NK & γδΤ cells

Fc-mediated killing

NK = Natural killer

A NETWORK OF TOP INNOVATORS IS FUELING TAKEDA'S CELL THERAPY ENGINE

CUTTING-EDGE ENGINEERING & CELL PLATFORMS

TAKEDA IS EMBARKING ON A TRANSFORMATIVE CAR-NK PARTNERSHIP THAT COULD ENTER PIVOTAL TRIALS IN 2021

NK CAR Platform

Multiple mechanisms of tumor killing

Potentiation of innate & adaptive immunity

. .

3 FOUR NOVEL, OFF-THE-SHELF CAR-NK THERAPIES IN DEVELOPMENT Takeda

PATIENT VALUE PROPOSITION

Rapid and deep responses with a short-time-to-treatment, safe, off-the-shelf CAR-NK available in outpatient & community settings

Initial opportunity in G7 countries (CD19)*						
3L+ DLBCL ~8,000						
3L+ CLL	~5,000					
3L+ iNHL	~6,000					

Potential to move into earlier lines of therapy

PLATFORM VALUE INFLECTIONS

PLATFORM	PARTNER	MECHANISM-OF-ACTION	PROGRAMS	PRECLINICAL	PH 1
CAR-NK (allo cord blood)	MD Anderson Cancer Center Dr. Katy Rezvani	Non-autologous NK cell therapy	TAK-007 (CD19 CAR-NK) BCMA CAR-NK Platform expansion	**	— ⊁

= first-in-class

3) DRAMATIC COMPLETE RESPONSE IN FIRST PATIENT TREATED

47-YEAR OLD MALE WITH RELAPSED TRANSFORMED DOUBLE-HIT (C-MYC / BCL-2) DLBCL

Cancer Center

Baseline scan

Day 30 post CAR19-NK

KINETICS OF CAR-NK VERSUS ENDOGENOUS T AND B **CELLS IN PERIPHERAL BLOOD**

12

Data from Dr. Katy Rezvani, MD Anderson Cancer Center

3 IMPRESSIVE RESPONSES IN OTHER HEAVILY PRETREATED PATIENTS Takeda

60-YEAR OLD FEMALE WITH CLL / ACCELERATED CLL (5 PRIOR LINES OF THERAPY)

61-YEAR OLD MALE CLL/RICHTER'S TRANSFORMATION (5 PRIOR LINES OF THERAPY)

Baseline scan

Day 30 post CAR19-NK CR in Richter's; SD in CLL

Baseline scan

Day 30 post CAR19-NK

Data from Dr. Katy Rezvani, MD Anderson Cancer Center

13

CAR-NK CELLS PERSIST IN PATIENTS AND DO NOT TRIGGER CYTOKINE RELEASE SYNDROME (CRS)

CAR-NK CELLS PERSIST UP TO 4 MONTHS POST INFUSION

IL-6 LEVLS POST CAR-NK INFUSION DO NOT INDICATE CRS

CRS = Cytokine Release Syndrome

*Turtle et al. 2017

Data from Dr. Katy Rezvani, MD Anderson Cancer Center

CAR-NK EFFICACY & TOXICITY TREATING MULTPLE DIAGNOSES

	Diagnosis	Lines of Treatment	HLA Match	CRS / Neurotox	Complete Response
Dose Level 1	DLBCL - Relapsed transformed double-hit	3 Incl. ASCT	Partial match	None	✓
	DLBCL - Refractory	7	Partial match	None	PD
	CLL	4 Incl. ibrutinib & venetoclax	Partial match	None	\checkmark
Dose Level 2	CLL	4 Incl. ibrutinib	Partial match	None	PD
	CLL/Richter's transformation	5 Incl. ibrutinib	Partial match	None	* Richter's
	CLL/Accelerated CLL	5 Incl. ibrutinib & venetoclax	Partial match	None	\checkmark
	CLL	4 Incl. ibrutinib	Partial match	None	✓
Dose Level 3	DLBCL - Refractory	11 Incl. ASCT	Partial match	None	\checkmark
	DLBCL - Relapsed transformed double-hit	4 Incl. ASCT	Partial match	None	\checkmark
	Follicular lymphoma - Relapsed	4 Incl. ASCT	Mismatch	None	PD
	Follicular lymphoma - Relapsed	4	Mismatch	None	\checkmark

CLL = Chronic lymphocytic leukemia

CRS = Cytokine release syndrome

DLBCL = Diffuse large B-cell lymphoma

ASCT = Autologous stem cell transplant

HLA = Human leukocyte antigen

PD = Progressive disease

*Complete response for Richter's

15

Data from Dr. Katy Rezvani, MD Anderson Cancer Center

FAST-TO-CLINIC CELL THERAPY ENGINE WILL MAXIMIZE LEARNINGS ON MULTIPLE 'DISRUPTIVE' PLATFORMS

5 CLINICAL-STAGE PROGRAMS EXPECTED BY END OF FY20

FY21+:
Other cell
therapy
candidates

16

A RICH AND POTENTIALLY TRANSFORMATIVE EARLY CLINICAL ONCOLOGY PIPELINE

PLATFORM	PARTNER(S)	MECHANISM-OF-ACTION	PROGRAMS	PRECLINICAL PH1
STING agonism	CURADEV Let science do the talking	Innate-to-adaptive priming	TAK-676 (STING agonist) Targeted STING agonist	
SUMOylation 🕜 🤼		Innate immune enhancer	TAK-981 (ADCC combo)	→
Attenukine™ 🕜 🛝	teva	• Targeted attenuated IFN- α	TAK-573 (CD38-Attenukine	[M)
Agonist-redirected checkpoints	: SHATTUCK	Co-inhibition & co-stimulation	TAK-252 / SL-279353 TAK-254 / SL-115154	*
Shiga-like toxin A	∕∕ tem	Novel cytotoxic payload	TAK-169 (CD38-SLTA)	
IGN toxin	immun•gen.	Solid tumor-targeted ADC	TAK-164 (GCC-ADC)	
Conditional T cell engagers	MAVERICK THERAPEUTICS	Novel solid tumor platform	MVC-101 (EGFR COBRA TM)	
Cell therapy	Memorial Sloan Kettering Cancer Center	Off-the-shelf cell therapies	TAK-007 (CD19 CAR-NK)	—
platforms	NOILE-IMMUNE MDAnderso Cancer Center	n '	5 cell therapies expected i	n clinic by end of FY20

NME MILESTONES ACHIEVED IN FY19 AND LOOKING AHEAD TO OTHER POTENTIAL MILESTONES¹ THROUGH FY20

PIVOTAL STUDY STARTS, APPROVALS

SUMMARY

1

Total transformation of preclinical & early clinical pipeline

2

Differentiated opportunities in IO leveraging innate immunity & cell therapies

3

Multiple near-term catalysts informing momentum towards solid tumors